charge density distribution changes and tends to the profile for an infinitely long tube, shown by curve 2 in
Fig. 4. This curve is given by the first term on the right-hand side of expression (2.4) for q.

We thank V. V. Gogosov and V. V. Tolmachev for useful discussion of the work.
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ELECTRIFICATION OF A METAL BODY IN AN AEROSOL FLOW
WITH A SOLID DISPERSE PHASE IN THE PRESENCE OF A CORONA
DISCHARGE FROM THE BODY

V. L. Kholopov and L. T. Chernyi UDC 532.5:537

The electrification of a metal body in a flow of uncharged monodisperse aerosol with a solid disperse
phase is investigated within the framework of continuum mechanics [1]. The corona discharge from the body
is taken into account. We consider cases of well-conducting aerosol particles, for which the electric charge
relaxation time is much greater than the time of impact with the body. A closed system of equations and bound-
ary conditions describing the electrification of the body is obtained. We determine the main dimensionless
parameters affecting the electrification of the body. We obtain expressions for the electrification current, the
maximum coronga current, the floating charge and potential of the body, the maximum corona overvoltage, and
the characteristic time for establishment of the floating charge on the body. The main dimensionless charac-
teristics of electrification of a sphere with a spark gap are calculated.

1. We consider a metal body with a spark gap in a steady flow of uncharged monodisperse aerosol with
a solid disperse phase. As is known [2], the aerosol particles are charged by collisions with the body. The
body consequently acquires an electric charge that is opposite in sign to the particle charge. This effect is ob-
served when bodies move through clouds, precipitation, and a dust-laden atmosphere [3]. It can be used in elec-
‘tric probes designed for measuring the parameters of aerosol flows [4].

Using the methals of continuum mechanics [1, 5] we will consider the averaged motion of a monodisperse
aerosol flow past a body as the interpenetrating motion of two continuous media — gas and aerosol particles.
We assume that the concentration of the latter is fairly low and their effect on the gas motion can be neglected.
Then, in the investigation of the electrification of bodies the motion of the gas can be regarded as prescribed.
The averaged motion of the aerosol particles before collision with the body is described by the following equa-

tions:

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 37-42, May~
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m (0"9/92") v = bapa (1 L % RezlaJ u—v Iz/s) (u—v),
Yy (1.1)
0 (TIV )/ax =0, v {x3=-—oo == u°e3, n |x3=_w =79,

where m, @, 5, and v are the mass, radius, concentration, and velocity of the aerosol particles; Re =2« pu°/ TR
Reynolds number of the aerosol particle; u, p, and u, viscosity, density, and velocity of the gas; xk k=1, 2, 3),
a Cartesian coordinate system in which the x® axis has the same direction as the aerosol flow undisturbed by

the body; ey, a unit vector parallel to the x3 axis; u’, velocity of the undisturbed aerosol flow; n‘_’, concentration
of aerosol particles in it. It follows from relations (1.1) that

v = uy*(z*}, 8t, Re), n = n’n*(z**, St, Re); ' 1.2)
St(v*kd/dz*M)v* = {1 + (1/6)Re 2/ Ju* — v*[*/3) (u* — v*), (1.3)
3 (n*v™)/0z™ =0, v* be*se oo = €30 N* 43 _o = 1,

St = mu®/(BrpaR), u* = w/u®, z** = z*/R,

where 2R is the characteristic dimension of the body; St is the dimensionless Stokes number. The dimensionless
functions v * (x*k), n* (x*k) for a given distribution of dimensionless gas velocity u* (x*K) are completely deter-
mined by the Stokes and Reynolds numbers.

The increase in electric charge of the aerosol particle due to collision with the body (Aep) depends on the
physical properties of the materials of the body and particle, the size of the particle, the velocity immediately
before impact, and the electric field E at the impact point on the body surface. Collisions of aerosol particles
with the body lead to the flow of an electric current on it;

J+ = _S"HU\'Aep (1‘77 E‘V) d37 E, =.(Ev)y Uy == (VV). (1 4)
5 K

Here v is the external normal to the body surface; the integration is taken over the part of the body surface S
from which the aerosol particles are reflected; repeat collisions of the particles with the body are ignored
(calculations show that their contribution tothe electric current J4 is small).

We denote by E' the characteristic value of the electric field, which has an appreciable eifect on Aep,
and by & the striking potential of the corona discharge from the body in the absence of external fields. Since
the potential of the initially uncharged body is opposite in sign to the particle charge increment Aep, it is ob-
vious that aI)OAep < 0. Henceforth, we confine ourselves to the case where the external field is absent and the °
conditions

e AR | < | D/R < E' (1.5)

are fulfilled, where ¢ is the dielectric constant of the aerosol; AeI% is the characteristic change in charge of
the aerosol particle on impact with the body. The inequalities (1.5) mean that in the considered case the elec~
tric field has no effect at all on Aep, or the electrification current, and the electric field produced by reflected
aerosol particles has no effect on the corona discharge. Relations (1.5) are always fulfilled for fairly rare-
field aerosols (e.g., atmospheric aerosols) and spark gaps with low striking potential.

It follows from the physical sense of Aep that it is defined only at points on the part S of the body surface.
However, we can formally introduce the function Aep(xk) at any point in space through which a streamline of
the aerosol particles impinging on the body passes. For this we assume that the function Aep(xk) is constant
along the streamlines of the aerosol particles and is equal to the change in electric charge of the particles
moving through them when the particles collide with the body. For streamlines of aerosol particles that do
not collide with body we put Aep = 0. On the basis of the second relation in (1.1) the function Aep(xk) defined
in this way satisfies the equality

O(Aegnuk)/ozt = 0. (1.6)

We consider the set of portions of the aerosol particle streamlines terminating on the body. They form
a stream tube that is bounded by a lateral surface S' and cuts out a part S on the body surface. Inthe impinging
flow (where x® — ~«) we draw a plane II perpendicular to its velocity, from which this stream tube cuts out a
region 8,. This region is called the capture cross section. We integrate relation (1.8) over the volume bounded
by the surface S +8' + 8, using the Ostrogradskii—Gauss formula and the equality (1.4). As a result we obtain
a formula connecting the electrification current J4 with the values of the parameters in the incident aerosol
flow:
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To= —utut § Beyds = —qour 5 Aey (v (bys by)) dbydbs, @7
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where by and b, are direction parameters defining the aerosol partlcle streamlines. As by, by we take the Car—
tesian coordinates x!, x? in plane 1I.
The equation of electrification of the initially uncharged body has the form
dQ/dt = J, — J., @ = eC®, Q= =0, (1.8)

where t is the time; Q, &, C, charge, potential, and capacitance of the body; J_, electric current of the corona
discharge. In sufficiently rarefied aerosols, where the first inequality of (1.5) is fulfilled, we have the following
empirical ratio for J_,T

T- = a(CysbD/L -+ Coeud) (D — D),

{0 DS DO, Ae, =0, (1.9)
1, DD <0, Aep=0,

in which b is the mobility of the corona discharge ions (b&? > 0); I is the characteristic length of the spark gap;
Cy» C, are dimensionless coefficients which depend on the geometry of the body.

2. Introducing the dimensionless quantities &* =&/&% J¥ =J,/ au°<1>° Ae =Aep/ Aed, C* =C/R, t* =
u’% /R, bf =b; /R, bf = by/R, we write relations (1.7)-(1.9) in the form

crawrare = By* — %, 1* = L { Acjaban,,
"so _ (2.1)
Gp,0
Ji:a(r,(i‘—d)* e ) (@* — 1), Pey— ——>0 B—_12%% g,
g Y

where Spp is the area of the central section of the body; Pef, is the electric Péclet number; B is a dimension-
less parameter characterizing the ratio of the electric field of the aerosol to the electric field of the body.
On the basis of the first inequality in (1.5) we have |B| « 1, and since Aef,cl:o < 0, then B > 0.

The presence of the small parameter B in Eq. (2.1) means that we can directly write expressions for the
maximum overvoltage of the corona discharge and the maximum spark gap current, attained when dé* /dt* = 0;

max (O/P° — 1) = B(C,/Pe; + Co)-1J*, (2.2)
max J.. = J; = eu®°'BJ*,

The values of the floating potential &' and charge Q?' of the body and the characteristic time 7! for their es-
tablishment are also found from (2.1):

@' = D1 + BI*(C,/Pey + Cy)-'1, Q' = €', " = C/(uBJ*).

Thus, all the main characteristics of electrification of the body are expressed in terms of the function J*,
given by the second equality of (2.1), which depends on the change in charge of the aerosol particles on colli-
sion with the body Aep(vy). Various expressions can be proposed for Aep 4, 8, 71. We confine ourselves
henceforth to the case of well-conducting aerosol particles, where the relaxation time of the electric charge

in the particle 74 = & / (4moy) is muchlessthan the time of impact 7 of the particle with the body, and the
case of poorly conductmg aerosol particles, when Te= sp/ @mop) > 71 (here &p and op are the dielectric con-
stant and conductivity of the aerosol particle).

3. Ignoring the effect of the electric field, we determine the change in charge of well-conducting, ini-
tially uncharged particles from the formula [6]

Aep = Cope (1 — e74), A= 0,18/(Cod), (3.1)
So = a(0.577 4 0,5 In (2a/d)), Aep= Cyq.,

1V. V. Ushakov, Dissertation for the Degree of Doctor of Technical Sciences: Electrogasdynamic Streams
and Electrostatic Charge Control Systems for Aircraft [in Russian], KIIGA, Kiev (1978).
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where ¢ is the contact potential difference for the particles and body materials; S, is the mean area of con-
tact of the particle with the body during the collision; d is a constant with the dimension of length, whose value
is of the same order as the Debye radius of the particle material. The collision parameters 7, S, contained
in relation (3.1) can be found on the basis of the quasistatic theory of impact of an aerosol particle with a body,
which in this case can be regarded as a half-space. For a normal elastic collision we have

2/5
+

v = 3h/|vy), Sc = 2ah, b = a{% v (1 — v3)/EY + (1—v§)/E},’)] (3.2)
where pp is the density of the aerosol particle; vy, Eg (vps E%{) are the Poisson's ratio and Young's modulus
of the particle (body).

In view of the relations (3.1), (3.2}, (1.2), and (1.3), the expression (2.1) for J* can be put in the form

J*(8t, Re, 45) = — S‘[i —exp (— 4, ] vy (St, Re, b7, b;) [*)] dbjdb;,
Sl( .
S5 (3.3)
Su = Su/R?, Sy = Sy/R?, byy = by 4/R, Ay = A (s

The function v3}(St, Re, bj*, bf)} contained in relation (3.3) was determined by computer calculation of the
velocity field of the aerosol particles and their streamlines on the basis of the first equation of (1.3). We then
calculated the integral on the right-hand side of relation (3.3). Figure 1 shows a plot of log J* against the
Stokes number St for well-conducting particles in the case of potential flow past a sphere of radius R [1) Re =
10, Ay =55 2) Re =100, Ay =5; 3) Re =10, A; =0.01; 4) Re =100, Ay = 0.01]. When St =« it follows from the
first equation of (1.3) that v* = const and for | v}, | we obtain the expression | v§| = (1 — bf?— by 21/2, which
is valid for any conditions of gas flow past a sphere. In this case the value of J* is found analytically

1
7* =2 [t —oxp (— 4, (VT=5"9) Jprare = 1 — Loy (2, 4,)
0

Here v is an incomplete gamma function: b* = (b}2 + b1/,

4. Ignoring the effect of the electric field, we determine the change in charge of poorly conducting
(e » 7), initially uncharged particles from the formula [7]

Aep — 2.11_1/20(3'5/2) enoz me AegE A€p| (4-1)

where C(7/2) =0.78 is the value of the Fresnel integral; Z = mah is the maximum area of contact of the par-
ticle with the body; e, D, n, are the charge, diffusion coefficient, and volume concentration of charge carriers
in the particle involved in the reaction on the surface of the body when a particle collides with it. Relation (4.1)
is valid for an infinite rate of this reaction, when the charged-particle concentration on the surface of contact
of the particle with the body becomes zero. For a normal elastic collision the quantities 7 and h contained in
relation (4.1) are determined from formulas (3.2).

vv=u07

In the considered case of poorly conducting particles the expression for J*, in view of the equalities
(4.1), (3.2), (1.2), and (1.3), has the form

T* (8t Re) = j|vz (St, Re, b7, %) [ db? db?. @.2)
M %

S
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Figure 2 shows a computer-calculated plot of log J* against the Stokes number St for poorly conducting par-
ticles in the case of potential flow past a sphere of radius R. Curves 1-3 correspond to Re =10, 102, and 108,
When St =« we have

1
ye=2{ (VT ropea ~ 2
0

Figures 1 and 2 indicate_that there is a critical value of the Stokes number (St, > 0), at which J* becomes
zero. When the Stokes number is less than St the particles do not reach the body surface. In this case J* =0
and there is no electrification of the body.

As an example we consider the electrification of a spherical body of diameter 2R =10 m in an aerosol
flow of ice particles with diameter @ =10~ m, concentration »° = 10® m=3, and flow velocity u® = 100 m/ sec.
For pure ice sp =72, 0p =4 - 1077 @71 . m™1, ¢ =1.6 - 107C, ny & 10%-10* m~3, Ef =3 - 10° N/m?, »p = 0.3.
In this case the inequality 7 2z 107% sec « Te =1.6 - 1073 sec is fulfilled and the theory expounded in Paragraph
4 is applicable. For these numerical values of the parameters we have St =2, Re =103, J* =1071, Ael"3 ==5 -
1078 ¢, J/Sy =5 + 107V A/m?. Such current densities are actually observed when hodies move in clouds and
precipitation [2].
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APPLICATION OF THE MULTIPLE-SCALE METHOD IN THE
PROBLEM OF WAVES ON THE SURFACE OF A LIQUID

V. A. Batishchev and V. V. Trepachev UDC 523.593

Sretenskii [1] has used the method of integral transforms to solve the problem of waves on the surface
of a viscous incompressible liquid of inifinite depth. In the low-viscosity case Potetyunko and Strubshchik [2]
have constructed asymptotic expansions that are valid in finite time intervals.

In this article we consider the planar Cauchy—Poisson problem for the linearized Navier —Stokes equa~
tions in application to the motion of an incompressible low-viscosity liquid under the action of an initial eleva-
tion of the free surface:

av/ot = —Vp 4 e*Av, divv =0,
P=pr+ 2z, v=0,0 =, (2)(t = 0), — p + AL + 2%0,/0z =0 (z =0),

AL18t = v, Bve/3z + Bv,/oz =0 (2 =0), 1)
(v, 8v/oz, p, 8pldz, Ly)—0,|z| = o0,
v=0 (z=—H).

Rostov-on-Don. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 42-44,
May-June, 1982. Original article submitted April 3, 1981.
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